

Business Cycle stylised facts: new evidence for the Euro area using business survey data

```
T. Cesaroni (*), L. Maccini (**), M. Malgarini (***)
```

- * Treasury Ministry of Economic and Finance, Rome
- ** John Hopkins University, Baltimore
- *** Institute for Studies and Economic Analyses, Rome

EC Workshop on Business and Consumers Surveys

Bruxelles, November 10, 2008

Aim of the paper

- We build upon a previous study on the Italian economy (Malgarini, 2007) to provide:
 - a first assessment on the role of inventory accumulation in shaping business cycle volatility
 - for the countries of the Euro Core (Italy, France and Germany)

Novelty of the paper

- Characterization of the main features of Euro Area and US business cycles (use of a Euro Core aggregate).
- Further evidence on the Great Moderation using data starting from 1963 (Blanchard and Simon, 2001; Stock and Watson, 2002; Ahmed, Levin and Wilson, 2004)
- Investigation of the hypothesis on advances in inventories management techniques due to computerization as an explanation for volatility reduction (Mc Connel, and Perez Quiros, 2000; Maccini and Pagan, 2008)
- Use of Business Tendency survey data at the European level

Data Description

- o Real Economy:
 - GDP seasonally adjusted.
 - Industrial Production index seasonally adjusted
- Qualitative data coming from Business Tendency surveys:

(Current orders, Current production, Inventories, Expected production)

- Frequency: Quarterly, 1963:1-2008:1
- Countries: US, UK, EA, IT, FR, DE and Euro Core aggregates

GDP growth component for the Euro Core, the UK and the US

- o Timing of cyclical patterns is quite similar
- o US activity seems to be leading with respect to European fluctuations

GDP growth for countries of the Euro Core

- o Strong similarity of cyclical patterns within the Euro Core
- o Also volatility of fluctuations is similar, and it tends to slow down towards the end of the sample

Cross correlations of European countries with US business cycle

- o Cross correlations among the US and the Euro Core are respectively equal to .4 and .6 for GDP and Industrial Production
- o Cross correlation functions peak at lag 2 and 1 respectively, confirming that US cycles are leading with respect to the European ones

Cross correlation	with US	GDP	(t+k)	
-------------------	---------	-----	-------	--

	k	-4	-3	-2	-1	0	1	2	3	4
Germany		0.11	0.28	0.42	0.48	0.44	0.28	0.06	-0.16	-0.31
France		0.32	0.46	0.52	0.47	0.32	0.09	-0.14	-0.32	-0.38
Italy		0.35	0.46	0.50	0.43	0.27	0.03	-0.22	-0.42	-0.51
Euro core		0.28	0.45	0.56	0.55	0.42	0.19	-0.09	-0.33	-0.47
Uk		0.10	0.26	0.40	0.48	0.48	0.41	0.30	0.17	0.06
US		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			Cro	ss correl	ation wit	h US Ind	ustrial Pro	oduction (t	+k)	
	k	-4	-3	-2	-1	0	1	2	3	4
Germany		0.01	0.20	0.38	0.50	0.51	0.39	0.19	-0.06	-0.27
France		0.02	0.28	0.52	0.65	0.64	0.47	0.20	-0.10	-0.33
Italy		0.06	0.28	0.47	0.57	0.54	0.37	0.12	-0.14	-0.36
Euro core		0.03	0.27	0.49	0.61	0.60	0.45	0.19	-0.10	-0.34
Uk		0.20	0.38	0.52	0.57	0.52	0.39	0.22	0.06	-0.06
US		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Investigation of Euro Area volatility reduction

- o Business cycle volatility is slowing down after 1984 (Kim and Nelson, 1999) both in the US and in Europe
- o Considering the whole sample, volatility is lower in Europe than in the US, with the only exception of Italy

		GI	OP		Industrial Production			
	Std Abs.	Relative Standard deviation to US relative to 1965-2006		Std Abs.	Relative to US	Standard deviationrela 1965-2006	ationrelative to	
	1965:1- 2006:1	1965:1- 2006:1	1965:1- 1983:4	1984:1- 2006:1	1965:1- 2006:1	1965:1- 2006:1	1965:1- 1983:4	1984:1- 2006:1
Euro Core	0.82	0.73	1.25	0.73	2.59	1.13	1.25	0.72
Germany	1.00	0.88	1.23	0.75	2.27	0.99	1.22	0.77
France	0.71	0.63	1.15	0.84	2.94	1.28	1.30	0.64
Italy United	1.16	1.03	1.34	0.59	2.36	1.03	1.31	0.62
Kingdom United	0.91	0.81	1.28	0.68	2.09	0.91	1.34	0.56
States	1.13	1.00	1.33	0.59	2.29	1.00	1.32	0.61

Volatility of Output growth (BP filter)

o Volatility is showing a clear trend decline, both looking at GDP and Industrial production data

Volatility of Output growth

Volatility of Output growth

Business survey data

- We use BTS data on Current orders, Production (levels and expectations) and inventories for the countries of the Euro Core (both taken as a whole and by country)
- BTS data usually show a clear correlation with industrial activity
- Cross correlations generally peak at lead 1, indicating that survey variables leas actual industrial production by 1 quarter
- Coefficients are generally rather high, being above .7 in absolute terms for assessments on production and inventories
- Inventories are confirmed to be countercyclical (see below)

Are BTS data a good proxy for real activity?

Table 6 - Correlation between business surveys data and industrial production, 1965-2006

				Curre	ent orders	s (t-k)			
K	-4	-3	-2	-1	0	1	2	2 3	4
Germany	0.30	0.50	0.67	0.74	0.70	0.53	0.28	-0.02	-0.29
France	0.19	0.34	0.49	0.57	0.55	0.42	0.19	-0.06	-0.30
Italy	0.17	0.40	0.59	0.66	0.60	0.38	0.10	-0.18	-0.39
Euro									
core	0.21	0.45	0.63	0.72	0.66	0.47	0.19	-0.12	-0.37
				Curren	t producti	on (t-k)			
K	-4	-3	-2	-1	0	1	2	2 3	4
Germany	0.44	0.61	0.69	0.64	0.44	0.12	-0.21	-0.46	-0.59
France	0.14	0.35	0.55	0.67	0.63	0.45	0.17	-0.13	-0.40
Italy	0.00	0.20	0.42	0.58	0.60	0.45	0.20	-0.08	-0.30
Euro									
core	0.17	0.42	0.63	0.73	0.68	0.48	0.20	-0.10	-0.34
				Expecte	ed product	tion (t-k)			
K	-4	-3	-2	-1	0	1	2	2 3	4
Germany	0.50	0.63	0.67	0.58	0.36	0.04	-0.28	-0.52	-0.63
France	0.31	0.49	0.58	0.53	0.36	0.10	-0.16	-0.36	-0.44
Italy	0.25	0.43	0.53	0.51	0.39	0.15	-0.09	-0.30	-0.40
Euro	0.40	0.50	0.00	0.50	0.00	0.00	0.00	0.40	0.57
core	0.43	0.59	0.66	0.59	0.38	0.08	-0.22	-0.46	-0.57
				Inv	entories (t-k)			
K	-4	-3	-2	-1	0	1	2	2 3	4
Germany	-0.41	-0.61	-0.75	-0.77	-0.66	-0.43	-0.12	0.20	0.45
France	-0.12	-0.42	-0.65	-0.74	-0.63	-0.36	-0.01	0.32	0.54
Italy	-0.16	-0.40	-0.57	-0.62	-0.53	-0.31	-0.04	0.21	0.38
Euro	0.00	0.54	0.70	0.70	0.05	0.44	0.00	0.04	0.40
core	-0.26	-0.51	-0.70	-0.76	-0.65	-0.41	-0.08	0.24	0.49

Volatility of BTS data

- Also for BTS data, volatility appear to be much lower in the second part of the sample
- Moreover, volatility of survey data also show a clear decline over time
- In all countries inventories balance experiment the highest volatility reduction
- The volatility reaches the lowest level in the last part of the sample (2000-06)

Volatility of Business survey data

			С	urrent orde	rs			
	Standard		-				000	
	deviation 1965-	1964-	Star 1970-	idard devia 1980-	tion, relativ 1990-	e to 1962-2 2000-	008 1965-	1985-
	2006	1969	1970-	1989	1999	2008	1984	2008
Euro								
Core	16.66	1.02	1.13	0.94	0.93	0.73	1.11	0.83
Germany	19.13	1.28	1.00	0.80	0.98	0.78	1.12	0.84
France	16.66	4.40	0.55	1.05	1.11	0.81	0.64	1.04
Italy	19.48	1.13	1.21	1.05	0.75	0.49	1.20	0.66
			Cur	rent produc	ction			
	Standard		_					
	deviation 1964-	1964-	Star 1970-	ndard devia 1980-	tion, relativ 1990-	e to 1965-2 2000-	006 1965-	1985-
	2008	1964-	1970-	1980-	1990-	2008	1984	2008
Euro								
Core	19.263	0.41	1.24	0.94	0.86	0.50	1.22	0.70
Germany	9.93	0.83	1.10	0.89	0.96	0.93	1.14	0.89
France	13.17		0.76	0.92	1.17	0.92	0.82	1.05
Italy	14.15	1.09	0.95	1.08 rent invento	0.88	0.54	1.08	0.75
	Standard		Cur	rent invento	ones			
	deviation		Star	ndard devia	tion, relativ	e to 1962-2	008	
	1965-	1964-	1970-	1980-	1990-	2000-	1965-	1985-
_	2006	1969	1979	1989	1999	2008	1984	2008
Euro Core	9.24	1.33	1.37	0.83	0.62	0.45	1.31	0.55
Germany	10.69	1.56	1.06	0.75	0.84	0.43	1.25	0.69
France	10.88	1.42	1.33	0.79	0.62	0.38	1.31	0.58
Italy	10.73	1.23	1.57	0.81	0.35	0.23	1.34	0.36
			Even	atad aradi.	otion			
	Standard		Expe	ected produ	Cuon			
	deviation		Star	ndard devia	tion. relativ	e to 1965-2	006	
	1964-	1964-	1970-	1980-	1990-	2000-	1965-	1985-
_	2008	1969	1979	1989	1999	2008	1984	2008
Euro Core	19.26	0.85	1.14	0.98	0.95	0.70	1.15	0.80
Germany	11.22	1.12	1.08	0.93	0.95	0.76	1.18	0.30
France	12.58	0.75	1.08	0.83	0.90	0.74	1.16	0.81
Italy	14.05	1.14	1.07	1.01	0.75	0.52	1.08	0.65

Volatility of business survey data

- Is Inventories volatility reduction an autonomous factor influencing business cycle volatility?
 - Inventory balance indicates how much inventories diverge from their Normal (desired) level.
 - Denoting with Nt and N* the current and desired level of stocks, if:
 - If Nt/N*>1 firms report that inventories are above normal levels, i.e....
 - ... the balance can be interpreted as a qualitative measure of the divergence between the actual and desired level of inventories.

- o Let's assume that:
 - for any given period (t) production levels (Y_t) are equal to sales (X_t) plus the variation of inventory holdings (N_t-N_{t-1}) , $Y_t=X_t+(N_t-N_{t-1})$
 - The desired level of inventories (N*) depends positively on the level of sales,
- Then N_t/N* is higher the higher is the level of current stocks and the lower the level of sales and...
- o ... volatility of Nt/N* depends upon:
 - Volatility of sales
 - Ability of firms to adjust the desired level of stocks
 - Ability of firms to adjust the actual to the desired level of stocks

- According to this interpretation, the reduction in (Nt/N*) volatility may alternatively be attributed to:
 - Lower standard deviation of exogenous shocks (i.e. shocks hitting sales)
 - Changes dynamic process of inventory accumulation.
 - This latter case can be alternatively interpreted as evidence of technological change affecting
 - the choice of the optimal level of stocks
 - the process of adjustment of the actual to the desired level of stocks.

Let's assume that Nt/N* follows an AR process:

$$\frac{N_{t}}{N_{t}^{*}} = a(L) \frac{N_{t-i}}{N_{t-i}^{*}} + \varepsilon_{t}$$

- The order of the autoregressive process is chosen so as to maximise the likelihood function
- We estimate an AR(4) on two different sample periods, allowing for a discrete break in 1984
- An increase/decrease in the sum of AR coefficients implies an increase/decrease in the persistence of shocks
- Similarly, an increase/decrease in the standard error of the regression (SER) implies an increase/decrease in the magnitude of exogenous shocks hitting the process

Sum of AR coefficients

SER

	1963-1983	1984-2008	1963-1983	1984-2008
Euro Core	0.82	0.86	3.71	1.60
Germany	0.82	0.87	4.20	2.05
France	0.73	0.80	5.51	2.57
Italy	0.76	0.83	5.19	2.49

Results

- During the Great Moderation, innovations to the current/desired inventory ratio decreased substantially in all the countries considered.
- On the other hand, the persistence of shocks increased slightly in the period 1985-2008 with respect to the previous decades.

Results

- According to these findings, the impact of external shocks has played a major role in reducing the volatility of the current/desired inventory ratio.
- Moreover, an increase in the persistence of shocks shows that exogenous innovations have ceteris paribus a greater impact on inventory volatility with respect to the first part of the sample.

Future research

Use of Microdata coming from Business surveys to test the model for the analysis of inventories behaviour.