Biometrics Deployment of EU-Passports

EU – Passport Specification

Working document (EN) – 28/06/2006

(As the United Kingdom and Ireland have not taken part in the adoption of this measure, an authentic English version of the whole specifications has not been established)
Table Of Contents

1 Scope and Limitations ..3
2 Biometrics ...3
 2.1 Primary biometric – Face ...3
 2.1.1 Standard compliance ..3
 2.1.2 Type ...4
 2.1.3 Format ...4
 2.1.4 Storage requirements ...4
 2.1.5 Other issues ...4
 2.2 Secondary biometric – Fingerprints ...4
 2.2.1 Standard compliance ..4
 2.2.2 Type ...5
 2.2.3 Format and Quality ..5
 2.2.4 Storage requirements ..5
3 Storage medium (RF-Chip architecture) ..5
 3.1 Standard compliance ..5
 3.2 RF-Interface ..5
 3.3 Storage capacity ...5
4 Electronic Passport chip layout (data structure) ..6
 4.1 Standard compliance ..6
 4.2 Correlation with printed data ..6
 4.3 Chip Logical Data Structure ..6
5 Data security and integrity issues ..6
 5.1 Standard Compliance ..6
 5.2 Digital data security ..6
 5.3 Inspection Procedure ..8
 5.4 Public Key Infrastructure for Passports ...8
 5.5 Public Key Infrastructure for Inspection Systems ...8
 5.5.1 Certificate Validity Periods ..8
 5.5.2 Certificate Scheduling ...8
 5.5.3 Certificate Policies ...9
6 Conformity Assessment ...9
 6.1 Standard compliance ...9
 6.2 Functional Evaluation ...9
 6.3 Common Criteria Evaluation ...10
7 Normative References ..10
1 Scope and Limitations

This document describes solutions for chip enabled EU passports, based on the EU document [1] titled

“Council Regulation on standards for security features and biometrics in passports and travel documents issued by Member States”

The document is based on international standards, especially ISO standards and ICAO recommendations on Machine Readable Travel Documents, and accommodates:

- Specifications for biometric identifiers: face and fingerprints
- Storage medium (chip)
- Logical data structure on the chip
- Specifications for the security of the digitally stored data on the chip
- Conformity assessment of chip and applications
- RF compatibility with other electronic travel documents

The following considerations are out of scope of this document:

- Specifications of the mechanical mounting of the chip in a passport book, durability and mechanical testing procedures.
- Specifications on standard operation procedures (SOP) for the enrolment or the inspection process.

2 Biometrics

2.1 Primary biometric – Face

2.1.1 Standard compliance

2.1.2 Type

The facial image must be stored as FRONTAL IMAGE\(^1\), according to [3, 4].

2.1.3 Format

The face is to be stored as a compressed IMAGE FILE, not as vendor specific template. Although both JPEG and JPEG2000 compression is standard compliant [3], JPEG2000 is recommended for EU-Passports because it results in smaller file sizes compared to JPEG compressed images.

2.1.4 Storage requirements

<table>
<thead>
<tr>
<th>No.</th>
<th>Option</th>
<th>Remark</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JPEG compression</td>
<td>Approx. 12-20 KByte per photo</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>JPEG2000 compression</td>
<td>Approx. 6-10 KByte per photo</td>
<td>recommended (see 2.1.3)</td>
</tr>
</tbody>
</table>

2.1.5 Other issues

- Photograph Taking Guidelines taking into account the requirements of facial recognition technology have to be adopted according to ICAO standards [3]

2.2 Secondary biometric – Fingerprints

2.2.1 Standard compliance

\(^1\) According to ICAO standards, the “Face biometric data interchange image recorded in Datagroup 2 of the LDS shall be derived from the passport photo used to create the displayed portrait printed on the data page of the Machine Readable Passport; and shall be encoded either according to full frontal image or token image formats set out in the latest version of ISO 19794-5.”
2.2.2 Type
The primary fingerprints to be incorporated into the European Passport shall be:

PLAIN IMPRESSIONS OF THE LEFT AND RIGHT INDEX FINGER.

In the case of insufficient quality of the fingerprints and/or injuries of the index fingers, good quality, plain impressions of middle fingers, ring fingers or thumbs shall be recorded.\(^2\)

2.2.3 Format and Quality
The fingerprints must be stored as IMAGES, according to [5].

The quality of the fingerprint images shall be according to [5] and [15].

A compression of the images using the WSQ-algorithm according to [15] MUST be used in order to decrease file size.

2.2.4 Storage requirements
The use of fingerprint IMAGES requires approximately 12 – 15 KByte per finger.

3 Storage medium (RF-Chip architecture)

3.1 Standard compliance
- ISO/IEC 14443, Identification cards - Contactless integrated circuit(s) cards - Proximity cards [7]

3.2 RF-Interface
According to [3,7,8], both type A and type B RF-interfaces are considered to be ICAO standard compliant.

ICAO compliant passports will be equipped with either A or B type RF interfaces, requiring border inspection systems to accommodate both standards for passports.

3.3 Storage capacity
According to the ICAO Logical Data Structure [10], alphanumeric data of the machine readable zone (MRZ) of the document and digital document security data (PKI) must be stored on the chip together with the biometric identifiers.

Member States are required to use appropriately sized RF chips to hold the personal data and biometric features according to the EU regulation [1]. See also chapter 2.1.4 and 2.2.4.

\(^2\) The storage format (CBEFF – Common Biometric Exchange File Format) will record the type of fingers used (left index, right middle etc.) in order to ensure verification with the correct finger.
If, in accordance to the EU Regulation [1], a Member State wishes to include other data, extra storage capacity might be required.

4 Electronic Passport chip layout (data structure)

4.1 Standard compliance

- Common Consular Instructions (CCI), Chapter VI No. 4 and Annex 10

4.2 Correlation with printed data

The alphanumeric data, printed in the MRZ of the passport, according to [9], have to correlate to the data digitally stored in the chip according to [10].

4.3 Chip Logical Data Structure

According to [10].

5 Data security and integrity issues

The traditional passport document incorporates a number of anti-counterfeiting measures, including security printing and optically variable devices according to [1]. The integrity, the authenticity and confidentiality of the data, digitally stored in the passport’s chip, have to be equally secured.

5.1 Standard Compliance

5.2 Digital data security

<table>
<thead>
<tr>
<th>No.</th>
<th>Security</th>
<th>Remark</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Passive Authentication [11, 12]</td>
<td>Proves that the contents of the SO_D and the LDS are authentic and not changed.</td>
<td>REQUIRED for all data (ICAO mandatory security feature)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does not prevent an exact copy or chip substitution.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does not prevent unauthorized access.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does not prevent skimming.</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Active Authentication [11, 12]</td>
<td>Proves that the SO_D is not a copy but has been read from</td>
<td>OPTIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Security</td>
<td>Remark</td>
<td>Use</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the authentic chip.</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proves that the chip has not been substituted.</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does not prove that the content of the LDS is authentic and not changed.</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does not prevent eavesdropping on the communications between chip and inspection system.</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td>b) Chip Authentication</td>
<td>Proves that the SOD is not a copy and has been read from the authentic chip.</td>
<td>Use</td>
</tr>
<tr>
<td>[13]</td>
<td></td>
<td>Proves that the chip has not been substituted.</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prevents eavesdropping on the communications between chip and inspection system.</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional protection REQUIRED for all data at the time when fingerprint data are introduced or at the latest 36 months after the adoption of the technical specifications. Such a protection MUST NOT be enforced by the chip but EU-Inspection systems MUST use this mechanism, if supported by the chip.</td>
<td>Use</td>
</tr>
<tr>
<td>3</td>
<td>Basic Access Control</td>
<td>Prevents skimming.</td>
<td>Use</td>
</tr>
<tr>
<td>[11, 12]</td>
<td></td>
<td>Mitigates the risk of eavesdropping on the communications between chip and inspection system (see 2 b).</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does not prevent an exact copy or chip substitution (requires also copying of the conventional document).</td>
<td>Use</td>
</tr>
<tr>
<td>4</td>
<td>Terminal Authentication</td>
<td>Prevents unauthorized access to fingerprint data.</td>
<td>Use</td>
</tr>
<tr>
<td>[13]</td>
<td></td>
<td>Prevents skimming of fingerprint data.</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requires additional key management.</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does not prevent an exact copy or chip substitution (requires also copying of the conventional document).</td>
<td>Use</td>
</tr>
</tbody>
</table>
SOD Document Security Object (SOD). This object is digitally signed by the issuing State and contains hash representations of the LDS contents.

LDS Logical Data Structure

MRTD Machine Readable Travel Document

MRZ Machine Readable Zone

EAC Extended Access Control being according to ICAO the combination of chip authentication and terminal authentication

5.3 Inspection Procedure

Deleted

5.4 Public Key Infrastructure for Passports

In order to ensure integrity and authenticity of the digital data stored on the chip, a PKI is introduced: Each Member State MUST set up only a single Country Signing CA acting as the national trust point for all receiving states and at least one Document Signer issuing passports. Details on this PKI infrastructure (including signature algorithms, key lengths, and validity periods) can be found in [11].

Every Member State MUST notify the name and contact details of the organization responsible for the operation of the Country Signing CA and the Document Signer(s) to the Commission.

5.5 Public Key Infrastructure for Inspection Systems

To prevent unauthorized inspection systems to access fingerprint data another PKI is introduced: Each Member State MUST set up only a single Country Verifying CA acting as the national trust point for the passports issued by this Member State and at least one Document Verifier managing a group of authorized inspection systems. Details on this PKI infrastructure can be found in [13].

Every Member State MUST notify the name and contact details of the organization responsible for the operation of the Country Verifying CA and the Document Verifier(s) to the Commission.

5.5.1 Certificate Validity Periods

The validity of issued certificates MUST be within the following time frames.

<table>
<thead>
<tr>
<th>Entity</th>
<th>Minimum Validity Period</th>
<th>Maximum Validity Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country Verifying CA Certificate</td>
<td>6 months</td>
<td>3 years</td>
</tr>
<tr>
<td>Document Verifier Certificate</td>
<td>2 weeks</td>
<td>3 months</td>
</tr>
<tr>
<td>Inspection System Certificate</td>
<td>1 day</td>
<td>1 month</td>
</tr>
</tbody>
</table>

These indications may be changed by the Article 6 committee according to the test results presented by BIG.
5.5.2 Certificate Scheduling

To plan the scheduling of certificates the following processing and distribution times MUST be respected. Link certificates for the Country Verifying CA MUST be distributed at least 14 days before the certificate to be replaced expires.

<table>
<thead>
<tr>
<th>Certification Authority</th>
<th>Maximum Processing Time (Certificate Request)</th>
<th>Maximum Distribution Time (Certificate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country Verifying CA</td>
<td>72 hours</td>
<td>24 hours</td>
</tr>
<tr>
<td>Document Verifier</td>
<td>24 hours</td>
<td>48 hours</td>
</tr>
</tbody>
</table>

These indications may be changed by the Article 6 committee according to the test results presented by BIG.

5.5.3 Certificate Policies

The “BIG” will develop a common Certificate Policy within one year after the Commission Decision on the technical specifications.

The Country Verifying CA of each Member State SHALL publish a Certificate Policy and may set up a Certification Practice Statement in accordance with the requirements set out by the “BIG”, in particular indicating the conditions under which a certificate for a (foreign) Document Verifier will be issued. The Commission shall be informed about the adoption of the Certificate Policy.

6 Conformity Assessment

A technical working group (“Brussels Interoperability Group”, BIG) will be established [18] to convey interoperability of passports conforming to the present specification.

6.1 Standard compliance

- ICAO NTWG, RF Protocol and Application Test Standard for E-Passport; Parts 2&3 [19]

6.2 Functional Evaluation

For the functional evaluation of MRTD chips the appropriate standard [19], which is currently under development, SHALL be used. Additional test cases required for the implementation of [13] MAY be defined by BIG.
Every Member State MUST contract an accredited (national) test laboratory to certify functional compliance to the relevant standards on all ISO/OSI layers. Issued certificates MUST be notified to the Commission.

<table>
<thead>
<tr>
<th>ISO/OSI Layer</th>
<th>Standard</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>ISO 14443 [7]</td>
<td>Hardware</td>
</tr>
<tr>
<td>6</td>
<td>ISO 7816 [12,20]</td>
<td>Software (OS)</td>
</tr>
<tr>
<td>7</td>
<td>ICAO Application [10,11]</td>
<td>Software (Application)</td>
</tr>
</tbody>
</table>

6.3 **Common Criteria Evaluation**

Passport chips MUST be evaluated in accordance with the relevant Common Criteria Protection Profile [14,17].

7 **Normative References**

[2] Deleted

[6] Deleted

[7] ISO/IEC 14443, Identification cards – Contactless integrated circuit(s) cards – Proximity cards

FBI: Wavelet Scalar Quantization (WSQ)
www.itl.nist.gov/iat

[16] Deleted

[18] Brussels Interoperability Group, Terms of Reference

[19] ICAO NTWG, RF Protocol and Application Test Standard for E-Passport; Parts 2&3