The effectiveness of R&D tax incentives

Pierre Mohnen

Workshop on the revision of state aid rules for research and development and innovation (R&D&I)

Brussels, January 9, 2013
Direct government funding and R&D tax incentives in % of GDP

Source: OECD, Main Science and technology Indicators, 2011
Market failures in R&D&I

- **Spillovers**
 - Disincentive from imperfect appropriation
 - Social return higher than the private return
- **Asymmetric information**
- **Uncertainty and incomplete capital markets for risky events**
- **Large size and indivisibility of certain projects**
- **Coordination problems (e.g. skills availability)**

Brussels, January 9, 2013
Kinds of R&D tax incentives

• In proportion to the level of the expenses
 – immediate write-off or expensing
 – tax credits proportional to the level of R&D

• In proportion to the increment of R&D
 – Definition of the base (fixed or variable, e.g. last two years)

• Measures intended to remove ceilings in the effective use of tax incentives
 – refundability of unused tax credits
 – Carry-back and carry forward of unused tax credits
 – Flow through mechanisms, i.e. transfer of unused tax credits to an eligible third party

• Focus on specific types of R&D
 – environment, health, defense, agriculture, information
 – university, small and medium enterprises (SME), regional support, R&D cooperation

• Indirect tax incentives
 – reduced corporate income taxes, exemption of capital gains taxes
 – Reduced taxes on dividends from venture capital funding
 – Reduced taxes for high-skilled immigrants
Table 1. Details of differences in R&D tax incentives schemes across selected OECD countries 2009

<table>
<thead>
<tr>
<th>Design of the R&D tax incentive scheme</th>
<th>Volume base R&D tax credit</th>
<th>Australia, Canada, France, Norway, Brazil, China, India</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incremental R&D tax credit</td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td>Hybrid system of a volume and an incremental credit</td>
<td>Japan, Korea, Portugal, Spain</td>
</tr>
<tr>
<td></td>
<td>R&D tax allowance</td>
<td>Denmark, Czech Republic, Austria, Hungary, UK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payroll withholding tax credit for R&D wages</th>
<th>Belgium, Hungary, Netherlands, Spain</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>More generous R&D tax incentives for SMEs</th>
<th>Canada, Australia, Japan, United Kingdom, Hungary, Korea, Norway</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Targeting</th>
<th>Special for energy</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Special for collaboration</td>
<td>Italy, Hungary, Japan, Norway</td>
</tr>
<tr>
<td></td>
<td>Special for new claimants</td>
<td>France</td>
</tr>
<tr>
<td></td>
<td>Special for young firms and start-ups</td>
<td>France, Netherlands, Korea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ceilings on amounts that can be claimed</th>
<th>Italy, Japan, United States, Austria, Netherlands</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Income based R&D tax incentives</th>
<th>Belgium, Netherlands, Spain</th>
</tr>
</thead>
</table>

| No R&D tax incentives | Estonia, Finland, Germany, Luxembourg, Mexico, New Zealand, Sweden, Switzerland |

Note: R&D tax allowances are tax concessions up to a certain percentage of the R&D expenditure and can be used to offset taxable income; R&D tax credits reduce the actual amount of tax that must be paid.
Price elasticity of R&D

• Netherlands: short-run -0.3, long-run -0.7

• Quebec:
 – Small firms: -0.14 in SR, -0.19 in LR
 – Large firms: -0.06 in SR, -0.10 in LR

• Comparison with other studies:
 – Bloom, Griffith, van Reenen (2002), -0.1 in SR, -1.0 in LR
 – Harris, Li, Trainor (2009), -0.53 in SR, -1.36 in LR
 – Wilson (2005), in LR -1.0 within states, but given market stealing from out-of-state, total effect -0.1
 – Mairesse-Mulkay, 0.6 after 2008, above 2 before 2008 (incremental R&D tax credit)

Brussels, January 9, 2013
Not all firms apply for R&D tax credits

• Higher probability to apply if
 – Capacity for innovation (human and financial capital)
 – Stable financial position
 – Received R&D subsidies before

• SMEs incur obstacles in applying for R&D tax credits

• Corchuelo and Martinez-Ros report that in Spain around 50% of the firms in 2002 did not know about the tax incentives and only 29% of those you knew used them.

Brussels, January 9, 2013
Ways to assess effectiveness of R&D

Additionality
Cost-effectiveness ratio
Incrementality ratio
Tax sensitivity ratio

Full Cost benefit analysis
Spillovers
Administration costs
Compliance costs
Opportunity costs

General equilibrium analysis
Wage effects
Balanced budget
Open trade

Second-order effects
Third-order effects
Bang for the buck (BFTB)

• Definition:
 – changes in R&D/changes in tax expenditures

• Deadweight loss:
 – Paying for R&D levels and R&D increases that would have happened anyway
Figure 1: Mean BFTB after t years

Large and small firms
BFTB in Quebec

• If level-based R&D tax credit increases by 10%, for small firms, the BFTB stays above 1 after 20 years, for large firms it falls below 1

• Deadweight loss: 68% for small firms, 82% for large firms

• If increment-based R&D tax credit increases by 10%, the BFTB= 2.98 for small firms, 2.79 for large firms

Brussels, January 9, 2013
Sensitivity analysis (from Parsons and Phillips, 2007)

The MEB lines trace combinations of spillover effects and incrementality ratios that result in a welfare gain of zero. Combinations that lie above the line result in a welfare gain while combinations below the line result in a welfare loss.

Net Welfare Gain

Net Welfare Loss

Brussels, January 9, 2013
Wage effects

• Why?
 – To stimulate researchers to apply for R&D tax credits
 – Supply constraint of R&D personnel
 – Search costs for R&D personnel
 – Negotiating power of R&D personnel

• Elasticity of the R&D wage with respect to the fraction of the wage supported by the fiscal incentives scheme is estimated at 0.1 in the short run and 0.13 in the long run.

Brussels, January 9, 2013
Extensive margin

• Attract new R&D performers
• Because of sunk entry costs, give extra incentive to newcomers to cover these costs
• Because of R&D persistence, effects are long-lasting
• low deadweight loss
• 25% of manufacturing firms in Spain need subsidies to enter but not to continue R&D
• This would raise the percentage of R&D performing manufacturing firms in Spain from 20% to 30%, cost 110 million Euro but yield over 15 years 2,500 million Euro of additional R&D stock

Study by Pere Arqué-Castells and Pierre Mohnen, “Sunk costs, extensive R&D subsidies and permanent inducement effects”, UNU-MERIT working paper 2012-029

Brussels, January 9, 2013
Increment-based R&D tax incentives

• Pros
 – Less deadweight loss
 – Larger bang for the buck

• Cons
 – Little effect of the user cost of R&D
 – More effective with fixed base than with rolling base, although fixed base not very realistic.
 – Limit to R&D acceleration

Brussels, January 9, 2013
Pros and Cons of R&D tax incentives

Pros

- Let the private sector decide on the allocation of funds and let it foot part of the bill
- Neutral, not biased towards particular projects
- Predictable, reliable
- Lower administration costs than direct subsidies

Cons

- R&D tax incentives are not terribly effective in stimulating more R&D than the amount of tax revenues foregone in the long run, except perhaps for small firms
- Deadweight loss for level-based R&D tax credits
- Tax incentives support more the big firms than the small firms even if rates are more favorable for small firms
- Tax incentives might lead to research projects with a low rate of return, unprofitable without the tax support
- Benefits partly washed out by a wage effect

Brussels, January 9, 2013
Policy discussion

• Deadweight loss and effectiveness should be compared for tax credits versus direct government aid for R&D support.

• Combine R&D tax incentives with other incentives and complementary measures (e.g. creating human capital)

• Coordination of tax incentives to avoid tax competition

• Devise tax incentives or other means of support for innovation appropriate to the particular market failures (e.g. spillover, financing problems, or human capital insufficiencies)

• Keep tax laws stable