Capacity mechanisms in Europe

The fundamental issues behind the ongoing sector enquiry

Session 2 - If a capacity mechanism, which design is most appropriate?

Andrea Villa – Enel S.p.A.
Future RES Development

Renewable share on final gross consumption*

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>Reference Scenario</th>
<th>Target 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,4%</td>
<td></td>
<td>24,4%</td>
<td>> 27.0%</td>
</tr>
</tbody>
</table>

RES investments still needed to achieve 2030 targets

(*) RES target refers to all sectors (electricity, heating and cooling, transport) Sources: Primes 2013, 2030 Climate Energy Package
(**) ENTSO-E Scenario Outlook & Adequacy Forecast 2015, page 27
Adequacy Forecast
2016 - 2025

New capacity needed

Source: ENTSO-E Scenario Outlook & Adequacy Forecast 2015, pages 50 and 58
Future Trends in European Electricity Markets

Now
RES still not dominant in the energy mix
- Energy prices >0 most of the time
- RES offer limited balancing services
- Predictable imbalance costs

Near future
RES more prominent in the energy mix
- Energy prices >0 most of the time, but many hours with 0 and <0 prices
- RES offer some balancing services
- Imbalance costs increases

Next Decade
Bulk of energy from RES
- Energy prices 0 and <0 for many hours
- RES offer balancing services
- Imbalance costs very high

Variability in energy prices increases financing costs for new projects
Low revenues for programmable capacity could bring problems of Security of Supply

Note: Graphs are illustrative
Current Debate

Examples

Focus on energy-only market: how to foster day-ahead, intraday, and balancing prices

Capacity mechanism based on capacity tickets

The two sides have started tackling some issues of the current market design BUT they miss the major point: how to foster long-term signals
Capacity Remuneration Mechanisms (CRMs)

- Price-based
 - Capacity Payment
- Volume-based
 - Strategic Reserve
 - Capacity Tickets
 - Capacity Auctions
 - Reliability Options

Ability to provide long-term signals
Introduction of Reliability Options in Italy

Legislative Decree 379/2003
- Introduction of interim Capacity Payment
- NRA to define an adequate competitive Capacity Remuneration Mechanism

2008
First Consultation on possible models of CRMs

2009
Second NRA Consultation on CRMs

Directive 2009/28/EC

2010
Two NRA Consultations on details on parameters of Reliability Options

NRA Decision 375/2013
Final NRA approval

NRA Decision 98/2011
Regulators defined criteria to be followed by TSO’s proposal

30/06/2014
Ministerial approval

1/7/2014
Entry into force
Guidelines on State aid for environmental protection and energy

First Auction

Today
Reliability Options in Italy
1-way CfD between TSO and selected counter-parties

Rights
Receive premium (€/MW/year) during delivery period

Obligations
1. To submit offers in DAM and Ancillary Service Market (ASM)
2. To pay the difference between spot price and strike price (if>0)

Benefits
1. Deliver long-term signals for all capacity
2. Incentives to deliver capacity when is needed
3. Market-defined triggers and penalties
Auctions for Reliability Auctions in Italy

- **General Auction**
 - Lead time 4 years
 - Delivery period 3 years

- **Adjustment Auctions**
 - Lead time 3, 2, 1 year
 - Delivery period 1 year

- **Secondary Market**
 - Lead time <1 year
 - Delivery period 1 month
Reliability Options
Supply and Demand

Zonal Demands
Negative sloped zonal demands defined by TSO considering VOLL, electricity demand and required reserve (netting for foreign interconnection capacity)

Supply
Voluntary participation of not incentivised new and existing national programmable capacity > 10 MVA (de-rated capacity, calculated by TSO)
Possible participation of foreign capacity, distributed generation and demand side management in future auctions

Note: Graph is illustrative. For existing capacity under discussion the possibility to receive a minimum premium equal to avoidable fixed costs
Calculation of de-rated capacity considers average unavailability due to incidents and technical and regulatory imitations
VOLL: Value of Lost Load
Spot and Strike Prices

Note: the graph is illustrative, table from Terna

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Spot price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepted on the Day-ahead market</td>
<td>Offered price ≤ strike price</td>
</tr>
<tr>
<td>Presented but not accepted on the Day-ahead market (DAM) and not presented on the Dispatch Services Market (DSM) or Not presented on the DAM nor on the DSM</td>
<td>Price on the Day-ahead market (P_DAM)</td>
</tr>
<tr>
<td>Presented and accepted on the DSM</td>
<td>Max (P_DAM; Max Price on the DSM)</td>
</tr>
<tr>
<td>Presented but not accepted on the DSM</td>
<td>Strike price</td>
</tr>
</tbody>
</table>

DAM: System Marginal Price
DSM: Pay as Bid

CO2 and GC Imbalance Costs

Fuel Costs

Strike Price

Single strike price for all accepted capacity, calculated on variable costs of peak technology – updated

Variable O&M and other variable costs
Thank you very much for your attention