Which market design for Europe?
The role of capacity mechanisms

King’s College London, College of Europe conference

Capacity mechanisms in Europe – The fundamental issues behind the ongoing sector inquiry

Fabien Roques, Senior Vice President, Compass Lexecon

Brussels – 28 September 2015
FTI Consulting is a global business advisory firm that provides multidisciplinary solutions to complex challenges and opportunities.

FTI Consulting

- **GLOBAL REACH**
 - With 4,200+ professionals and offices in 24 countries on six continents, our breadth and depth extends across every major social, political, and economic hub across the globe.

- **EXPERIENCED PROFESSIONALS**
 - We are trusted advisors with diverse expertise and exceptional credentials serving clients globally.

- **DEEP EXPERTISE**
 - We combine unparalleled expertise and industry knowledge to address critical challenges, in both event-driven and long-term scenarios.

FTI CONSULTING FAST FACTS

- 1,300+ clients served
- 3 Nobel Laureates
- 700+ Industry experts
- 1982 Year founded
- $2bn enterprise value
- FCN publicly traded - NYSE

AMCF
Association of Management Consulting Firms

2012 Award for Business Strategy
FTI Consulting was recognized for helping The E.W. Scripps Company reinvent its newspaper operating model.

FTI CONSULTING FAST FACTS
About FTI

Service span of FTI Consulting – Energy Services

FTI Consulting operates across 5 service lines

Corporate Finance
- Provide strategic, operational, financial and capital needs of businesses. Address complete spectrum of financial and transactional challenges.

Forensic and Litigation Consulting
- Independent dispute advisory, investigative, data acquisition/analysis and forensic accounting services.

Economic and Financial Consulting
- Analysis of complex economic, regulatory and finance issues to assist clients in understanding the issues and opportunities they face.

Strategic Communications
- One of the world’s largest investor relations businesses specialising in advising companies in critical situations.

Technology
- Provides e-discovery software, services and expertise to deliver smart solutions for clients.

We support clients across the energy value chain

Strategic Evaluation
- Market Entry/Exit Strategy
- Policy Evaluation
- Resource, Technology & Market Assessment
- Supply chain evaluation / development
- Asset Valuation
- Business Model Evaluation / Development
- M&A / Transaction Support

Project / Company Development Support
- Due Diligence (technical / financial) (with TÜV SÜD PMSS)
- Project Finance and Transaction Support
- Dispute Resolution
- Independent Engineer Review (with TÜV SÜD PMSS)
- PPA Negotiations
- Resource evaluation
- T&D Analysis

Operational Enhancement
- O&M strategy
- Business Planning, root cause analysis, and performance improvement
- Procurement & Contracting Best Practices
- Turnaround and Restructuring
- Liquidity management
- Interim management (CRO, COO, CEO, CFO)
- Insolvency
What are the drivers of capacity mechanisms?

Energy only or capacity mechanism?

Debunking myths about capacity mechanisms

How to ensure cross border participation in capacity mechanisms?

Conclusions
Drivers of capacity mechanisms
Drivers of capacity mechanisms

The good, the bad, and the ugly…

Drivers of implementation of capacity mechanisms

- Guarantee politically determined security of supply criteria
- Address market failures affecting security of supply (missing money)
- Support timely investment
- Rescue stranded thermal plants
- Smooth power prices to reduce “politically unsustainable” volatility
- Dampen investment and retirement cycles

Drivers of reform depend on many country specific factors

- Existing generation mix and embedded flexibility
- Market arrangements
- Level of interconnection

Looking forward, member states have different needs

- Some countries need more dependable capacity, others need flexibility to support renewables, others are well supplied by all measures…

Economic drivers

Political drivers
Drives of capacity mechanisms

How much harmonization is necessary?

A wide range of market arrangements across Europe...

<table>
<thead>
<tr>
<th>Model 1: Ireland</th>
<th>Model 2: ES, PT, IT</th>
<th>Model 3: Nordic, CWE</th>
<th>Model 4: GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Market</td>
<td>▪ No meaningful forward market</td>
<td>▪ Financial forward market</td>
<td>▪ Financial and physical forward markets</td>
</tr>
<tr>
<td>Day Ahead</td>
<td>▪ Central dispatch with complex bids/offers</td>
<td>▪ Quasi-mandatory day-ahead auction</td>
<td>▪ DA auction with strong market support</td>
</tr>
<tr>
<td></td>
<td>▪ Traded volumes/prices not firm</td>
<td>▪ Locational bidding</td>
<td>▪ Portfolio bidding</td>
</tr>
<tr>
<td></td>
<td>▪ Locational bidding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraday</td>
<td>▪ D-1 gate closure</td>
<td>▪ Intraday auction slots</td>
<td>▪ Continuous trading</td>
</tr>
<tr>
<td></td>
<td>▪ No intraday market</td>
<td>▪ H-4 gate closure or more</td>
<td>▪ H-1 gate closure (or less being considered)</td>
</tr>
<tr>
<td>Capacity</td>
<td>▪ Fixed capacity payment</td>
<td>▪ Capacity and availability payment</td>
<td>▪ Strategic reserve (Nordics, Be, De)</td>
</tr>
</tbody>
</table>

FTI CL Energy

... which suggests harmonization of CM will be as challenging.
Drivers of capacity mechanisms

Member states have different issues and needs...

<table>
<thead>
<tr>
<th>Local specificities</th>
<th>FRANCE</th>
<th>GERMANY</th>
<th>UK</th>
<th>SPAIN</th>
<th>ITALY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Thermo sensitivity of power demand (electric heating)</td>
<td>- Grid constraints from North to South</td>
<td>- Large retirements of thermal plants</td>
<td>- Weak demand</td>
<td>- Internal zones and grid constraints</td>
</tr>
<tr>
<td></td>
<td>- Peak demand growth</td>
<td>- Nuclear phase-out</td>
<td>- Limited interconnection</td>
<td>- Strong RES growth</td>
<td>- Strong RES growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Strong RES growth</td>
<td>- Strong RES growth</td>
<td>- Quasi-mandatory pool</td>
<td>- Central dispatch</td>
</tr>
<tr>
<td>Key issues</td>
<td>- Peak demand growth (+25% in 10 years)</td>
<td>- Capacity needs in Southern Germany</td>
<td>- Major investment needs (capacity gap)</td>
<td>- Overcapacity and low profitability of CCGTs</td>
<td>- Overcapacity and low profitability of CCGTs</td>
</tr>
<tr>
<td></td>
<td>- Missing money for peak plants</td>
<td>- Flexibility needs</td>
<td>- Retirements driven by Large Combustion Plant Directive and Industrial Emissions Directive</td>
<td>- Generation back-up necessary due to RES penetration</td>
<td>- Coordination of generation and network investment</td>
</tr>
<tr>
<td></td>
<td>- Low profitability of CCGTs</td>
<td>- Low profitability of CCGTs</td>
<td>- Need for flexibility</td>
<td></td>
<td>- Flexibility needs</td>
</tr>
<tr>
<td>Main objectives of capacity mechanisms</td>
<td>- Ensure generation adequacy</td>
<td>- Retain existing capacity in the Southern Germany & drive new investment</td>
<td>- Ensure generation adequacy</td>
<td>- Incentivise availability and flexibility of existing plants</td>
<td>- Incentivise availability and flexibility of existing plants</td>
</tr>
<tr>
<td></td>
<td>- Support the development of demand response</td>
<td>- Ensure availability of flexible back-up generation</td>
<td>- Drive new investment in CCGTs</td>
<td>- Manage smooth rebalancing / avoid massive retirements</td>
<td>- Manage smooth rebalancing / avoid massive retirements</td>
</tr>
<tr>
<td></td>
<td>- Prevent market power abuses</td>
<td></td>
<td>- Ensure availability of flexible back-up generation</td>
<td>- Limit price spikes & volatility</td>
<td>- Prevent market power abuses</td>
</tr>
</tbody>
</table>

=> This suggests that a ‘one-size-fits-all’ approach is unlikely to work.
Energy only or capacity mechanism?
Energy only or capacity mechanisms?

Scarcity pricing is key...

“Electricity market reform and particularly the need for complementary mechanisms to remunerate capacity need to be analysed in the light of the local regulatory and institutional environment.

If there is a lack of investment, the priority should be to identify the roots of the problem.

The lack of demand-side response, short-term reliability management procedures and non-market ancillary services provision often undermine market reflective scarcity pricing and distort long-term investment incentives”
Energy only or capacity mechanisms?

...But risk hedging mechanisms are necessary

- The old saying goes “Don’t put the cart before the horse”

- Scarcity pricing needs to be supplemented by hedging products / fixed cost recovery mechanisms
 - There are - rare – cases of voluntary long term hedging mechanisms (CFDs, reliability options in Australia)
 - In case of missing market / product for hedging, consider legal obligations on suppliers or centralized procurement of forward capacity / hedging products

- Can all parties (including renewables operators) exposed to market price risks hedge their risk exposure?
Energy only or capacity mechanisms?

Conclusion: scarcity pricing and capacity mechanisms are complimentary

- Volatile energy prices
- Integration of renewables
- Liquid markets to hedge risks
- Capacity mechanism / risk hedging scheme
- Support for recovery of fixed costs
- Sound remuneration of flexible / dependable plants and DSM
- Reforms of energy markets to remunerate flexibility
- Remuneration of operational flexibility

Volatile energy prices

Liquid markets to hedge risks

Support for recovery of fixed costs

Sound remuneration of flexible / dependable plants and DSM

Reforms of energy markets to remunerate flexibility

Remuneration of operational flexibility
Debunking myths about capacity mechanisms
Debunking myths

4 misconceptions about capacity mechanisms

1. There is a choice between two opposite directions: scarcity pricing or capacity mechanisms.

2. Capacity mechanisms are subsidies to stranded assets.

3. A capacity mechanism will remove price spikes necessary to stimulate efficient system response.

4. Capacity mechanisms defined nationally are distorting EU energy markets.

⇒ These incorrect common beliefs derive from:
- Biased comparison of a perfect theoretical energy only market with an imperfect capacity mechanism.
- Misunderstanding of the interface between energy market and capacity mechanisms.
Debunking myths

How do energy and capacity markets interface?

What are the concrete interactions between energy and capacity mechanism?

- **Short term dispatch effects**
 - No effect on spot market unless capacity product is linked to physical injection (none if product based on availability), and even in this case limited to crisis situations
 - Second order effects associated with changes in maintenance schedules, etc.
 - No impact on cross border flows unless specific curtailment / redispatch rules are implemented

- **Long term mix effects**
 - Different generation mix (changes in plant retirements / investment decisions): overcapacity only if target capacity not aligned with reliability criteria determined by policy makers
 - Design parameters (technology neutrality, market based, etc.) critical to drive potential deviations from optimal mix (peak versus base load, supply versus demand, etc.)

Are the potential effects of these interactions significant?

- **Short term dispatch effects**
 - Likely insignificant, and smaller than distortions induced by uncoordinated RES policies, national generation mix interventions (support to local fuels, nuclear phase out), ETS exemptions and carbon price floor, etc.

- **Long term mix effects**
 - Potentially significant, but no more than RES policies / national generation mix interventions, etc.

How can the potential distortions be minimised?

- Sound design (product definition based on availability, design parameters, etc.)
How to ensure cross border participation in capacity mechanisms?
Cross-border participation in capacity mechanisms

The different methods

1. No Contribution
 - Neither interconnectors nor foreign providers contribute
 - This applies to most countries with capacity payment mechanisms (price based)

2. Statistical contribution
 - Contribution evaluated statistically and deducted from capacity target
 - Initial GB (net 0 contribution) and French approaches (~7GW out of 9GW of import capacity)

3. Interconnector participation
 - Interconnector participates directly in capacity mechanism
 - Solution implemented in GB from 2015 onwards, work in progress in France

4. Foreign Capacity participation
 - Foreign capacity providers participate directly in capacity mechanism
 - This has been implemented in the PJM Capacity Market

5. Cross-border Capacity Mechanism
 - Capacity mechanisms cover several zones OR national capacity mechanisms are “coupled”
 - No current international examples (except zones in PJM and Italy)

The definition of capacity products is a key – particularly whether the obligation is based on energy delivery or availability
Cross-border participation in capacity mechanisms

Need for a framework to deal with situations of coincidental scarcity

- In this example, country A contracted capacity up to 51GW, but only 47-49GW of its demand is satisfied depending on the situation.

- Without specific rules to control on capacity contracted abroad at times of scarcity, cross border participation has no value added in terms of security of supply over a simple statistical approach.
Conclusions
Conclusions

Current European electricity markets are incomplete and do not send the right price signals:
- Reforms of energy markets to reward flexibility and capacity mechanisms (CMs) are both needed and complementary
- Drivers for implementation of CMs differ across member states and explain patchwork of approaches
- One-size-fits-all approach unlikely to work and not necessary

Interaction of CM and energy market are misunderstood and largely overplayed:
- Well designed CM will not reduce price spikes, or affect cross border flows significantly
- Magnitude of potential distortions is small compared to distortions associated with other public interventions (RES support, etc.)

Cross border participation in CMs raises complex issues:
- Several approaches possible for explicit foreign participation with pros and cons
- Need for a European framework to deal with situations of coincidental scarcity

Capacity mechanisms are only a stepping stone - long term market design challenges:
- TM historically focussed on short term operational issues, focus needs to turn to investment incentives
- Risk hedging/sharing mechanisms such as long term contracts to reduce financing costs and support investment
- Coordination mechanisms for transmission, merchant generation and policy driven clean technologies
References

Toward the Target Model 2.0 – Policy Recommendations for a sustainable market design
 Web link

Publications on capacity mechanisms

- Market design for generation adequacy: healing causes rather than symptoms Web link
- Coordinating capacity mechanisms – which way forward? Web link
- European electricity market reforms: the “visible hand” of public coordination Web link

Publications on European electricity markets

- The new European Energy Union - Toward a consistent EU energy and climate policy? Web link
- European electricity markets in crisis: diagnostic and way forward Web link
Thank you for your attention

Fabien Roques
Senior Vice President
FTI - COMPASS LEXECON

fabien.roques@dauphine.fr

Fabien Roques
Associate Professor
Université Paris Dauphine

DISCLAIMER

The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The authors and the publisher expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the information contained in this work is free from intellectual property infringement. This work and all information are supplied "AS IS." Readers are encouraged to confirm the information contained herein with other sources. The information provided herein is not intended to replace professional advice. The authors and the publisher make no representations or warranties with respect to any action or failure to act by any person following the information offered or provided within or through this work. The authors and the publisher will not be liable for any direct, indirect, consequential, special, exemplary, or other damages arising therefrom. Statements or opinions expressed in the work are those of their respective authors only. The views expressed on this work do not necessarily represent the views of the publisher, its management or employees, and the publisher is not responsible for, and disclaims any and all liability for the content of statements written by authors of this work.