Toward a New Design for EU Electricity Markets

Peter Cramton
Professor of Economics, University of Maryland
www.cramton.umd.edu
13 April 2015
Market design

• Establishes rules of market interaction
• Economic engineering
 – Economics
 – Computer science
 – Engineering, operations research
Market design accomplishments

- Improve allocations
- Improve price information
- Reduce risk
- Enhance competition
- Mitigate market failures
Applications

- *Electricity markets*
- Spectrum auctions
- Natural resource auctions (timber, oil, etc.)
- Emission allowance auctions
- Financial securities
- Procurement
Objectives

• Efficiency
• Transparency
• Fairness
• Simplicity
Principle

“Make things as simple as possible, but not simpler” -- Albert Einstein
Electricity
Goals of electricity markets

• Short-run efficiency
 – Least-cost operation of existing resources

• Long-run efficiency
 – Right quantity and mix of resources
Challenges of electricity markets

• Must balance supply and demand at every instant at every location
• Physical constraints of network
• Absence of demand response
• Climate policy
Climate policy

• Transformation to renewable
• Germany
 – Replace nuclear with renewable
 – 80% renewable (mostly wind) by 2050
 – Significant probability of multiple days with wind in-feed less than 5% of capacity
 – Must back-up wind with peaker capacity
 – Require additional 30 GW of peakers by 2030
 – *How to get this built?*
Three Markets

• **Short term (5 to 60 minutes)**
 – Spot energy market
 • Energy: day ahead, real time with congestion pricing
 • Reserves: 30m non-spin, 10m non-spin, 10m spin, freq. regulation

• **Medium term (1 month to 3 years)**
 – Forward energy market
 – Bilateral contracts

• **Long term (4 to 20 years)**
 – Capacity market (thermal system)
 – Firm energy market (hydro system)
 – Bilateral contracts (Texas, Nord Pool)

• Address risk, market power, and investment
Why not energy only?

• Market failure
 – Absence of demand side

• Practical realities
 – Price caps
 – Operator decisions
 – Missing money
Long-term market:
Buy enough in advance
Purpose of market

• *Operational reliability*

• Pay no more than necessary
 – Induce just enough investment to maintain adequate resources
 – Induce efficient mix of resources
 – Reduce market risk
 – Reduce market power during scarcity
Product

• What is load buying?
 – Energy during scarcity period (capacity)

• Enhance substitution
 – Technology neutral where possible
 – Separate zones only as needed in response to binding constraints

• Long-term commitment for new resources to reduce risk
Pay for Performance

• Strong performance incentives
 – Obligation to supply during scarcity events
 • Deviations settled at price > $5000/MWh
 • Penalties for underperformance
 • Rewards for overperformance

• Tend to be too weak in practice, leading to
 – Contract defaults
 – Unreliable resources

• Recent adopters: ISO New England, PJM
 (and Texas within energy-only market)
State aid issues
Pricing rule

• Single-price (pay-as-clear) vs. pay-as-bid
• Is paying the clearing price to low-cost units state aid?
 – Of course not!
New vs. existing

• New investment desires long-term commitment (5 to 20 years)
• Existing does not need long-term commitment (1 year is best)
• Can we have the same price?
 – Yes, existing gets same price in expectation
• But does existing need to be paid at all
 – Yes, if solution is consistent with long run market
Conclusion

• Never ignore essentials
 – Encourage participation
 – Demand performance
 – Make bids binding (deposits or letters of credit)
 – Avoid collusion and corruption

• Long-run market requires
 – Well-functioning spot market
 – Strong regulatory framework with manageable regulatory risk